UNVEILING THE SIGNIFICANCE OF SHODHANA WITH SPECIAL EMPHASIS ON SAMANYA SHODHANA OF PITTALA

Rolli Ghildiyal1*, Yadavendra Yadav2, Shuchi Mitra3, Usha Sharma3, Khem Chand Sharma4

1*PG Scholar, 2Assistant Professor, 3Associate Professor, 4Professor and Head of Department, Department of Rasa Shastra & Bhaisajya Kalpana, Uttarakhand Ayurved University, Rishikul Campus, Haridwar, India.

ABSTRACT

Shodhana, a crucial procedure in the pharmaceutical preparation of metals and minerals, aims to eliminate impurities and undesirable properties from raw materials, rendering them suitable for further processing. This study focuses on Samanya Shodhana of Pittala, a Mishra Loha, following the guidelines outlined in Rasa Ratna Samucchya. The process involves heating raw Pittala until red-hot and subsequently quenching it in Tila Taila, Takra, Gomutra, Kanji, and Kulatha Kwatha for seven iterations. Post-Shodhana, observations were made regarding the weight loss of Pittala, as well as pH and color changes in the respective liquid media. Results indicate a total weight loss of 7.0% in Pittala after Samanya Shodhana, suggesting effective impurity eradication.

INTRODUCTION

Metals are abundantly found in nature, yet only a select few are acknowledged for their medicinal properties. Ancient texts categorize these metals under "Dhatu" (metal). Upon procurement, these metals undergo Shodhana (purification) and Marana (incineration) processes, ultimately being utilized in the form of Bhasma.[1] In Rasa Shastra, most raw materials used for Bhasma preparation are of mineral or metal origin, which increases the likelihood of impurities, heterogeneity, and undesired qualities. The pharmaceutical procedures involved in Bhasma preparation, such as Shodhana (purification/processing), Bhavana (trituration), Puta (heating), and Marana (incineration), aim to purify the medicinal substance, eliminating toxicity and rendering it suitable for therapeutic use.[2]

Shodhana is a process specifically designed to eliminate impurities from a substance. This multifaceted process involves various techniques such as Kshalana (washing), Mardana (pounding), Bhavana (levigation), Swedana (boiling), Bharjana (frying), Nirvapa (heating and dipping in specified liquids), and more. These methods are employed on mineral drugs to ensure thorough purification, thus enhancing the quality and efficacy of the final product.[3] It is indeed a detoxification process aimed at eliminating physical and chemical blemishes as well as toxic materials from a substance. By undergoing Shodhana, the material becomes purified and devoid of impurities, rendering it suitable for further processing and utilization in various applications. This process enhances the material’s overall quality and suitability for its intended purposes.[4] Pittala has been classified as Mishra Loha Varga.[5]

The objectives of Shodhana are multi-faceted and encompass several key aspects:

1. Elimination of Undesired Impurities: Shodhana aims to remove physical and chemical impurities present in the material, ensuring its purity and quality.

2. Reduction or Removal of Toxicity: By undergoing Shodhana, toxic substances within the material are minimized or eliminated, enhancing its safety for use.

3. Transformation of Material Properties: Shodhana facilitates the transformation of hard and heterogeneous materials into softer, more brittle, and homogeneous forms. This transformation enhances the material's usability and effectiveness in various applications.

4. Optimization of Efficacy: Shodhana is instrumental in potentiating the efficacy of the material by...
indicating desirable physicochemical changes and qualities. This process optimizes the material's therapeutic or functional properties, maximizing its beneficial effects.

Overall, *Shodhana* plays a crucial role in ensuring the purity, safety, and efficacy of materials, making them suitable for further processing and utilization in diverse fields such as medicine, manufacturing, and research.[6]

Types of Shodhana[7]

Samanya Shodhana *(general purification)*

It is a common procedure used for drugs of a particular group where the drugs of a particular group are subjected to a similar procedure individually.

Vishesha Shodhana *(specific purification)*

It is a specialized technique or procedure employed for a single particular drug individually.

MATERIAL AND METHODS

In this study, *Samanya Shodhana* of *Pittala* was done as per mentioned in *Rasa Ratna Samucchya*.[8]

Equipment

Long-handled ladle, lpg gas stove, sieve, stainless steel vessel, pair of tongs, weighing machine, measuring jar, spatula.

Ingredients

Raw Pittala: 500 gm, *Tila taila*, *Takra*, *Gomutra*, *Kanji*, and *Kulattha Kwatha*: Q.S.

Procedure

Raw *Pittala*, sourced from Moradabad, was subjected to *Shodhana* process. Initially, it was placed on a long-handled stainless-steel ladle and heated over a gas stove until reaching a red-hot state. Subsequently, it was sequentially quenched seven times in *Tila Taila*, followed by *Takra*, *Gomutra*, *Kanji*, and *Kulattha Kwatha*, with each liquid medium utilized for seven iterations. Following each heating and quenching cycle, *Pittala* was promptly collected from the liquid medium, thoroughly washed with hot water, and then dried. This rigorous procedure was repeated seven times, with fresh quantities of the same liquid media used each time. Throughout the process, the records were maintained, documenting the weight of *Pittala* and the volume of liquid media after each quenching cycle. The entire *Shodhana* process spanned a duration of 15 days.
Figure 1: Samanaya Shodhana of Pittala

Figure 2: The colour of flames observed while heating Pittala
RESULTS
Observations
A) Shodhana in Tila Taila
In Pittala: Throughout the Shodhana process, notable transformations were observed in the physical characteristics of Pittala. Initially bright yellow, the color gradually transitioned to black. The metallic luster of Pittala diminished, and certain portions even exhibited powdering after the initial phase of heating post the seventh quenching. Notably, a distinct hissing sound accompanied the heating process. Additionally, during the fifth quenching, an initial green flame was observed, subsequently transitioning to yellow as combustion ensued. Despite thorough washing with hot water, some residual oil persisted on Pittala surfaces, contributing to an increase in weight.

In media: Concurrently, transformations were evident in the liquid medium utilized during the Shodhana process. The color of the oil shifted from light yellow to light brown, with an increase in viscosity post-Shodhana. On observation, the oil exhibited combustible properties during quenching, emitting dense fumes upon ignition. Moreover, a pungent odor accompanied by a surge of black fumes was witnessed post-quenching.

Time taken in the quenching process: The average time taken during the quenching of Pittala in Tila Taila is 13 minutes and 46 seconds.

B) Shodhana in Takra
In Pittala: As the quenching process commenced, a distinct hissing sound resonated, indicative of the interaction between Pittala and the liquid medium. A vibrant deep yellow flame emerged during the quenching phase, gradually diminishing as Pittala transitioned to a red-hot state.

In media: The liquid medium exhibited dynamic behavior during quenching, with noticeable boiling observed. During this process, separation occurred, with the formation of solid and liquid phases, the former settling down. A smoky odor emanated during quenching, likely stemming from the interaction between the liquid medium and Pittala. The fine particles of Pittala suspended in Takra posed challenges during collection due to the medium's viscosity.

Time taken in the quenching process: The average time taken during the quenching of Pittala in Takra is 07 minutes and 45 seconds.

C) Shodhana in Gomutra
In Pittala: The color of Pittala underwent a significant transformation from black to jet black following the quenching process. Post-quenching, Pittala emitted a distinct odor reminiscent of Gomutra. Remarkably, a portion of Pittala, approximately one-fourth, fractured into small pieces, while the remaining portion became coarse powder, indicative of changes in its structural integrity. Furthermore, the brittleness of Pittala exhibited an increase subsequent to Shodhana.

In media: Gomutra exhibited intriguing behavior during the Nirvapa (quenching) process, boiling vigorously yet remaining contained within the vessel. Gomutra transitioned from its initial light yellow hue to a dark-reddish brown color. Additionally, a pungent odor characteristic of Gomutra was discernible throughout the quenching process.

Time taken in the quenching process: The average time taken during the quenching of Pittala in Gomutra is 09 minutes and 28 seconds.

D) Shodhana in Kanji
In Pittala: During the heating of Pittala, an initial green flame was observed, which transitioned gradually to yellow before ultimately turning orange. The metal underwent a note-worthy change in its physical properties, becoming more brittle and prone to breakage. Concurrently, the color of Pittala shifted to a blackish hue, with powdery residue accumulating at the base of the vessel. Post-quenching, a distinctive aroma characteristic of Kanji permeated the environment.

In media: Throughout the Nirvapa process, Kanji exhibited vigorous boiling while remaining contained within its vessel. This boiling action did not result in spillage. Moreover, the color of Kanji transformed a yellowish hue to a deep brown shade.

Time taken in the quenching process: The average time taken during the quenching of Pittala in Kanji is 08 minutes and 48 seconds.

E) Shodhana in Kulattha Kwatha
In Pittala: The brittleness of Pittala intensified further, rendering it easily breakable. Following quenching, Pittala transitioned in color from black to reddish black. A distinct aroma reminiscent of Kulattha Kwatha emanated after the quenching process. Separating Pittala from the liquid medium proved to be more challenging due to the presence of powdered Pittala residue.

In media: Kulattha Kwatha underwent boiling during the Nirvapa process. After quenching, Kulattha Kwatha lost its original color, transitioning to a dark red hue.

Time taken in the quenching process: The average time taken during the quenching of Pittala in Kulattha Kwatha is 06 minutes and 08 seconds.
Table 1: Changes in weight of Pittala after 7 Nirvapa in each media during Samanya Shodhana

<table>
<thead>
<tr>
<th>Initial Weight of Pittala (g)</th>
<th>Weight of Pittala ↑/↓ after 7 Nirvapa (g)</th>
<th>Total Weight loss after Samanya Shodhana</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tila Taila</td>
<td>Takra</td>
</tr>
<tr>
<td>500</td>
<td>525 ↑</td>
<td>492 ↓</td>
</tr>
</tbody>
</table>

Table 2: The changes in Media during Samanya Shodhana

<table>
<thead>
<tr>
<th>Media</th>
<th>pH Initial</th>
<th>pH Final</th>
<th>Colour of the media Initial</th>
<th>Colour of the media Final</th>
<th>Quantity Initial</th>
<th>Quantity Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tila Taila</td>
<td>6.6</td>
<td>5</td>
<td>Light Yellow</td>
<td>Light Brown</td>
<td>12 l</td>
<td>11.48 l</td>
</tr>
<tr>
<td>Takra</td>
<td>3</td>
<td>5</td>
<td>White</td>
<td>Yellowish</td>
<td>12 l</td>
<td>10.13 l</td>
</tr>
<tr>
<td>Gomutra</td>
<td>7.4</td>
<td>8.3</td>
<td>Light Yellow</td>
<td>Dark Reddish</td>
<td>12 l</td>
<td>10 l</td>
</tr>
<tr>
<td>Kanji</td>
<td>3.2</td>
<td>7.4</td>
<td>Yellow</td>
<td>Brown</td>
<td>12 l</td>
<td>10.78 l</td>
</tr>
<tr>
<td>Kulatha Kwatha</td>
<td>7.4</td>
<td>7.8</td>
<td>Reddish</td>
<td>Dark Reddish</td>
<td>12 l</td>
<td>11.23 l</td>
</tr>
</tbody>
</table>

Graph 1: Changes in pH of media during Samanya Shodhana

Graph 2: Avg. Change in weight of Pittala during Samanya Shodhana
DISCUSSION

Pittala underwent a significant weight loss of 7.0% following the Samanya Shodhana process, suggesting successful purification from impurities. Tila Taila, with its Snigdha, Sukshma, and Ashukari properties, facilitated rapid penetration into Pittala's voids and intermolecular spaces, forming a coating film. Further heating triggered chemical reactions and compound formation, potentially imparting organic properties from Tila Taila's active principles. Kanji's acidic nature and Tikshna, Bhedana, and Shithilikarana properties counteracted Tila Taila's Snigdhata, enhancing Pittala's brittleness. Additionally, Gomutra and Kanji's Ksharana, Pachana, and Bhedana properties aided in impurity eradication and reduced Pittala's hardness. Kulatha Kwatha's Ashmari Bhedhana property contributed to Pittala size reduction.

Quenching involved heating Pittala to elevated temperatures followed by immersion in fluids to control cooling rates and effect metallurgical changes. Various quenchant facilitated desired microstructural alterations and served as cooling agents, with slower rates allowing longer thermodynamic forces for microstructure changes. The sediment accumulation increased with each quenching.

The weight gain in Tila Taila was attributed to adhered residue despite rigorous rinsing. Takra showed suspended black particles, challenging collection. The maximum sediment was found in Kanji due to its strong acidity and Tikshna properties. The pH measurements before and after Nirvapana indicated neutral to acidic shifts, reflecting impurity release during Shodhana.

The stability of red-hot brass when interacting with compounds present in various substances is intricately linked to the pH and the specific chemical composition of these substances. In Tila Taila, while the neutral pH generally doesn't directly affect brass stability, the presence of acidic contaminants can accelerate corrosion, compromising its structural integrity. Takra, with its slightly acidic nature, can induce corrosion on the metal surface, weakening the material and promoting brittle fracture, potentially leading to surface degradation over time. Gomutra, being basic, can cause hydrogen embrittlement. Hydrogen atoms may diffuse into the brass matrix during exposure to basic solutions, leading to embrittlement and increased susceptibility to brittle fracture. Similarly, Kanji, a slightly acidic fermented beverage, can promote brass corrosion due to its acidic conditions, impacting both the stability and composition of the brass material. The alkalinity of Kulattha Kwatha can help mitigate the risk of brass degradation, contributing to the longevity of brass. Quenching metal in acidic media can indeed increase its brittleness, although the effect depends on several factors, including the type of metal, the specific acidic solution used, and the quenching process.

When heating Pittala, which is an alloy often composed of copper and zinc, the color of the flames can vary depending on the specific composition and impurities present in the alloy. Typically, when heating Pittala, a range of colors in the flames, including blue,
green, and yellow hues were observed. These colours can result from the oxidation of the metals in the alloy and the release of energy as light. The exact colours and their intensity can be influenced by factors such as the temperature of the flame and the specific proportions of copper and zinc in the alloy.

The observations of a green flame during quenching suggested copper presence on Pittala’s surface. The media color changes from light yellow to light brownish (Tila Taila), milky white to yellowish (Takra), light yellowish to dark reddish (Gomutra), yellow to brown (Kanji), and red to dark reddish (Kulatha Kwatha) indicated chemical interactions.

The quenching process comprised heating, rapid cooling, and post-quenching stages, leading to particle disintegration and size reduction. Alternating heating and quenching in basic and acidic media induced corrosive changes, removing soluble impurities. These natural media historically provided basic and acidic sources.

CONCLUSION

The significant 7.0% weight loss observed in Pittala post-Samanya Shodhana underscores the effective removal of impurities. This highlights that Shodhana isn’t merely about eliminating physical, chemical, and natural impurities (Doshnivaran) but also about enhancing the potency and efficacy of the substance while mitigating toxicity (Gunaantardhan).

REFERENCES

Address for correspondence

Dr. Rolli Ghildiyal
PG Scholar, Department of Rasa Shastra & Bhaisajya Kalpana, Uttarakhand Ayurved University, Rishikul Campus, Hardwar. Email: rollighildiyal7710@gmail.com

Cite this article as:

https://doi.org/10.47070/ijapr.v12i5.3223

Source of support: Nil, Conflict of interest: None Declared

Disclaimer: IJAPR is solely owned by Mahadev Publications - dedicated to publish quality research, while every effort has been taken to verify the accuracy of the content published in our journal. IJAPR cannot accept any responsibility or liability for the articles content which are published. The views expressed in articles by our contributing authors are not necessarily those of IJAPR editor or editorial board members.